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quantum problems’ ’’
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In response to the criticisms raised by Taseli@preceding Comment, Phys. Rev. E56, 1280~1997!#, we apply
the method proposed by us@Phys. Rev. E53, 1954 ~1996!# to the confined quartic and sextic anharmonic
potentials and show that our algorithm provides reasonable numerical estimates for the eigenvalues of one-
dimensional quantum problems under Dirichlet’s boundary conditions. The results obtained are in acceptable
~ten digits! agreement with those reported by Tas¸eli. @S1063-651X~97!04306-7#

PACS number~s!: 02.70.Bf, 03.65.Ge, 02.60.Lj
t’
ro

te
he
rt

te

im

in
um
o
c

ro-
not

Ta-
to
tial

d in
us
s,
ted
er-

hus,
of
rted
ne

in
for
p-
ho-

ed,

the
the
s to
-
ent

to

or.
Recently, we presented a method@1# to solve one-
dimensional quantum problems subjected to Dirichle
boundary conditions that is based on a matrix method p
posed by Lindberg@2# and a Richardson extrapolation@3#.
Taşeli @4# has shown that this algorithm is accurate up to
digits for the confined harmonic oscillator. However, t
complete algorithm was not tested in the confined qua
and sextic oscillators and thus produced eigenvalues with
unacceptable accuracy, particularly for highly excited sta
This deficiency of Lindberg’s approach@2# as implemented
by us has been fully discussed by Tas¸eli @4#, where he shows
that indeed some results are correct only to three dec
places, and does not allow one to claim that an algorithm
adequate to produce ‘‘exact’’ results for any problem. With
the finite-differences method, there are three ways to circ
vent this lack of accuracy. First, one could take the limit
vanishing step size (h); second, one could use the defe
correction method originally proposed by Lindberg@2#; and,
finally, one could use Richardson’s extrapolation@3# as it
was presented in our previous work@1#. Certainly, the ideal
approach is to take the limith→0, but this is computation-

TABLE I. Symmetric state eigenvalues of the quartic oscilla
as a function ofa2

a and the same confining radii (R) used in Ref.
@4#. The first step used in the extrapolation ish150.0025 and the
second ish25h1/2.

a2 n E2n R

0.0001 0 0.500 074 973 8 10.0
1 2.500 974 232 5 10.0
2 4.503 070 949 4 10.0

1.0 0 0.803 770 651 2 5.0
1 5.179 291 687 6 5.0
2 10.963 583 094 1 5.0

1000.0 0 6.694 220 850 5 1.7
1 47.017 338 732 4 1.7
2 102.516 157 134 2 1.7

100 000.0 0 31.008 270 778 9 0.75
1 218.016 572 253 9 0.75
2 475.514 422 768 3 0.75

aSee Ref.@4# for the definition ofa2 .
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ally unfeasible. To show that Richardson’s extrapolation p
vides results that are correct up to ten decimal places
only for the ‘‘trivial’’ confined harmonic oscillator but also
for more general potentials such as those considered by
şeli, in Tables I and II we present results corresponding
the quartic and sextic oscillators using the same poten
parameters and confinements tested by Tas¸eli @4#. As can be
seen, these results are in agreement with those reporte
Ref. @4#, confirming that the methodology proposed by
does provide reliable results not only for trivial problem
where the target is known, but also for more complica
potentials. Undoubtedly, the detailed numerical analysis p
formed by Tas¸eli for several polynomial potentials@5–7#
provides benchmark eigenvalues for these systems. T
when testing a new algorithm attempting to solve this type
problem, one should compare the results with those repo
by Taşeli. We recognize that this comparison was not do
in our previous work.

It is worth noting that the computational effort involved
the calculations reported by us decreases substantially
small confining intervals, in contrast to the variational a
proach, which requires very large basis sets to obtain a
mogeneous error for every confinement@6#. However, this
situation is reversed when the confining interval is enlarg
i.e., when the system approaches the free~unbounded! prob-
lem. In principle, truly exact results are obtained when
step in a finite-differences method tends to zero or when
number of basis functions in a variational approach tend
infinity. However, both limits are computationally impos
sible to reach. The above comments show that with curr

r

TABLE II. Symmetric state eigenvalues of the sextic oscillat
The first step used in the extrapolation ish150.01 and the second is
h25h1/2.

n E2n R

0 0.874 643 498 5 3.50
1 6.197 232 644 2 3.55
2 14.206 320 179 0 3.60
3 24.129 650 493 0 3.65
4 35.637 149 199 1 3.70
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technology there is no single methodology to deal with
given problem in a general situation.

The robustness claimed in our paper rests on
aforementioned statements and also on the capability
our methodology to tackle more complicated confined pr
lems. In fact, we have applied the algorithm to confin
many-electron atoms@8#, where no clever or enlightene
transformation either of the original problem or the ba
set was necessary to solve the resulting radial equa
subjected to Dirichlet’s boundary conditions. At this poi
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it is worth noting that experimental~spectroscopic! accuracy
in these atomic problems is within the 1021-cm21

range, which demands a 1027-a.u. accuracy in eigenvalu
differences. Thus an algorithm producing ten dig
is enough to deal with these problems. Finally, we wou
like to mention that the term ‘‘strongly convergent’’ wa
applied to our methodology because, as it was fully d
cussed in Ref.@1#, it complies with the mathematical defin
tion of a strongly convergent sequence, and has no fur
implications.
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